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Mixing and segregation of granular matter:
multi-lobe formation in time-periodic flows
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We study size segregation in two classes of granular systems in time-periodically
forced quasi-two-dimensional tumblers. In dry granular systems (DGS), particles are
immersed in air, whereas in liquid granular systems (LGS) or slurries, particles are
wholly immersed in a less dense liquid. Experimental results show lobe formation
and classical radial segregation, depending on the frequency of the forcing and fill
fraction of the system. Both DGS and LGS exhibit similar multi-lobe patterns when
subjected to the same forcing. A simple model captures the experimental results and
suggests that the symmetry of the forcing plays a crucial role in the emergence of
the patterns. Lobes form via a reinforcement mechanism that depends on the period
of the regular islands in the Poincaré map. The mechanism can be controlled by
changing the forcing period and/or fill fraction.

1. Introduction
Flowing granular matter is ubiquitous – examples abound in nature and tech-

nological applications. Ubiquity, however, has not resulted in a comparable level
of understanding and over the last few years there has been a substantial amount
of work trying to elucidate the often-baffling behaviour of flowing granular matter.
Furthermore, the interstitial fluid can complicate matters. In this study, two kinds of
granular systems are considered – dry granular systems and liquid granular systems. In
dry granular systems (DGS), particles are immersed in air, whereas in liquid granular
systems (LGS) or slurries, particles are wholly immersed in a less dense liquid. It is
important to stress that DGS and LGS are two-phase systems, either particles and
air or particles and a liquid. With only a few exceptions, nearly all of the voluminous
research on granular flows during the last decade has focused on DGS. Only a handful
of studies have addressed the motion of materials in LGS, and notable among them
have been several recent studies focusing on patterns in rotating cylinders in the
related field of suspensions (Tirumkudulu, Tripathi & Acrivos 1999; Thomas et al.
2001; Duong, Hosoi & Shinbrot 2004; Jin & Acrivos 2004). The physics of these
systems is undoubtedly different from the systems considered here. The noteworthy
result is that monodisperse neutrally buoyant particles partially filling a horizontal
rotating cylinder, under certain conditions, segregate into bands of particles separated
by regions of low particle concentrations.

One system that has become prototypical in mixing and pattern-formation studies
is the quasi-two-dimensional circular tumbler. Rotated cylindrical tumblers filled with
binary mixtures of large/small (S-systems) or dense/less-dense materials (D-systems)
separate radially in the plane perpendicular to the axis of rotation, forming a classical
radial segregation pattern in the case of a circle and, typically, two rotating lobes



224 S. J. Fiedor and J. M. Ottino

in the cases of squares filled exactly half-full (Hill et al. 1999). This process occurs
quickly, within a single rotation, and has been observed in both DGS and LGS. A
continuum model of flow and segregation in a circular tumbler was proposed by
Khakhar et al. (1997) and applied by Hill et al. (1999) to mixing and segregation of
DGS in two-dimensional containers – elliptic and square – where the flow, interpreted
in a continuum sense, is chaotic. More recently, the model was extended to flow in
three-dimensional systems (Gilchrist & Ottino 2003). In all the cases studied to date,
the container rotates at a steady rotation rate, the single exception being the work of
Hill, Gioia & Amaravadi (2004).

It is, however, clear that mixing often takes place in systems where the flow within
the container is time-periodic–the time-periodicity arising owing to the steady rotation
of a non-spherical shape such as a square or a cube. Mixing in three-dimensional
geometries presents problems of its own and very few works have addressed this
subject; the two-dimensional case is undoubtedly simpler. However, there is an even
simpler case that has yet to be studied in detail: a circular container rotated in a
time-dependent manner. It is prudent to start with such a case.

There are two inter-related objectives of the present paper. The first is to uncover
similarities – to present a side-by-side comparison of mixing and segregation of DGS
and LGS; to what extent do both systems produce similar results when subject to
the same forcing? The second objective is to find out how well the results can be
interpreted in terms of a single model that depends solely on the underlying flow. In
order to produce the strictest testing and comparison, the systems will be operated in
such a way that the underlying motion, interpreted in a continuum sense, is chaotic.
This produces segregated structures that are strikingly different from regular flow and
therefore serves as a way to highlight possible variations between model predictions
and experimental results.

2. Forcing of system
The system is periodically forced with an angular velocity

ω = ωave + ωamp sin(2πfEt), (2.1)

where ωave is the average angular velocity, ωamp is the amplitude of oscillation, and
fE is the forcing frequency of the experiment. The rotation is restricted to only one
direction. That is, ωave is greater than zero and ωamp is less than ωave,

0 < ωamp < ωave. (2.2)

This ensures that the maximum angular velocity (ωmax) and minimum angular velocity
(ωmin) are both positive. The forcing frequencies are such that there is an integer
number of cycles per revolution, i.e.

fE = integer︸ ︷︷ ︸
(cycles rev−1)

ωave︸︷︷︸
(rev s−1)

. (2.3)

This constrains the system to be rotationally symmetric every 1/integer revolutions
(see figure 1). Note that the system has a time-dependent angular velocity, ω(t), and
angular acceleration, dω(t)/dt , but owing to the rotational symmetry ω and dω/dt

can be viewed as position dependent. Figure 1(a) shows the dependence of ω viewed
with respect to time (bottom axis, solid line) and angular position (θ) (top axis,
dashed line) corresponding to a system with a forcing frequency of 4 cycles rev−1.
Figure 1(b) shows ω on polar coordinates of θ for the same system. This plot serves
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Figure 1. Symmetry of the time-forcing protocol. (a) Angular velocity plotted as a function
of time and angular position corresponding to a system with a forcing frequency of 4 cycles
rev−1; it takes a time 4T to complete one revolution. (b) Angular velocity as a function of
angular position plotted on polar coordinates. A point starting at θ = 0 starts at the minimum
speed and then undergoes four cycles of acceleration and deceleration.
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Figure 2. (a) Particle streamlines in a circular tumbler rotated at a steady rotation rate.
(b) Particle streamlines in a circular tumbler at two different rotation rates. Note the crossing
streamlines in the flowing layer. (c) Schematic of the model.

to highlight the rotational symmetry of the system. When the tumbler is at position
θ =0, the angular velocity is at a minumum. As the tumbler rotates, it accelerates
until it reaches the maximum angular velocity at θ = π/4, and then decelerates to the
minimum angular velocity at θ = π/2, and so on. In general, symmetries may arise
owing to the geometry of the container as well as the forcing protocol. In this paper,
the system is restricted to circular containers, and therefore the symmetry is solely
dependent on the forcing.

3. Details of the model
The continuum model used here (based on the work of Khakhar et al. 1997, 1999)

is simple. The model describes the mean flow; thus the material in the tumbler is
assumed to be homogeneous, rather than consisting of different kinds of particles.
Further, we assume that the flow consists of two distinct regions: a flowing layer with
nearly unidirectional flow and a bed below it undergoing solid-body rotation, see
figure 2. This is an approximation; experiments show the velocity in the flowing layer
decreases exponentially with depth, rather than being a sharp transition between the
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two regions (Komatsu et al. 2001; Jain, Ottino & Lueptow 2002). However, this is an
excellent approximation for short time scales.

The shape of the flowing layer–bed interface is taken as

δ = δ0

(
1 − x2

L2

)1/2

, (3.1)

where δ0 is the maximum layer thickness (at x = 0) and L is the layer length (Makse
1999; Khakhar, Orpe & Ottino 2001). Note that the dynamic angle of repose and
the thickness of the flowing layer depend on the thickness of the container and the
friction at the walls (Taberlet et al. 2003). Experiments also show that the thickness of
the flowing layer depends on ω (Khakhar et al. 1997). In the model, this is accounted
for by changing δ0. The free surface of the system is assumed to be flat and does not
move. To incorporate the changing thickness of the flowing layer with ω, δ0 is made
time dependent,

δ0 = δ0,ave + δ0,amp sin(2πfEt), (3.2)

where δ0,ave is the average maximum layer thickness and δ0,amp is the amplitude of
oscillation. The oscillating flowing-layer thickness results in streamline crossing; i.e.
streamlines show transversal intersections when streamline portraits corresponding to
different rotation rates are superposed (see figure 2). This results in a chaotic flow
(Ottino (1989)).

Particles in the bed move with the same velocity as the tumbler,

vr = 0 (3.3)

and

vθ/r = ωave + ωamp sin(2πfEt). (3.4)

Material is continuously avalanching downward in the flowing layer. Both collisional
diffusion and segregation of particles are neglected. A linear velocity profile is assumed
in the streamwise direction,

vx =
ωL2

δ0

(
1 − y

δ(x)

)
, (3.5)

where x and y are coordinate positions as defined in figure 2. Using δ(x) from (3.1), vx

from (3.5) and the continuity equation, the velocity profile in the transverse direction
is determined to be

vy =
−ωδ0xy2

2δ3(x)
. (3.6)

The values of δ0,ave and δ0,amp are approximated from experimental observation and
result in δ0 ranging from 0.05L to 0.1L in the half-full system. There is theoretical
guidance relating the thickness of the flowing layer and its dependence with ω

(Khakhar et al. 2001). Numerical simulations show that the results are insensitive to
the values of δ0.

4. Maps
The velocity field of the granular material within the container, v(x, t), interpreted

from a continuum viewpoint, is time-periodic, i.e. v(x, t) = v(x, t + T ). Such systems
can be reduced to a mapping φ(x). In a period T , xn is mapped to xn+1, xn+1 = φ(xn);
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i.e. if initial conditions are denoted as x0, xn = φn(x0). Periodic points are such that
p = φn( p), where n is the period of the point. Thus a periodic point of order 1 returns
back to position p after time t = T , 2T , 3T , . . . ; a periodic point of order 2 returns
back to p after t =2T , 4T , 6T , . . . . Periodic points in two-dimensional systems can be
classified as either elliptical or hyperbolic. The linearized flow near an elliptic point
is a rotation or a twist; the linearized flow near a hyperbolic point is a contraction
in one direction and a stretching in another. Elliptic points are surrounded by KAM
curves; domains within KAM curves are called islands. Islands are invariant regions –
material within an island remains within the island. In general, the largest visible
islands are those with the lowest periods and within KAM curves there are additional
higher-order periodic points, both hyperbolic and elliptic. The period of an island
corresponds to the lowest-order periodic point and the boundary of an island to the
outermost KAM curve.

A useful way of identifying the location of low-period islands and chaotic regions
is by means of Poincaré sections. To compare the numerical results to experiments,
Poincaré sections are made using the model in the following manner. Particles are
initially placed at various locations in the bed. Particle positions are then determined
by integrating the equations of motion in time. If a particle lies in the bed, (3.3)
and (3.4) are used, whereas (3.5) and (3.6) are used for particles in the flowing layer.
The positions of the particles are recorded after each period T (defined as 1/fE or
one cycle of acceleration and deceleration). Poincaré sections are then constructed
by simply plotting all the recorded positions. Simulations are run for as many
cycles as is necessary to resolve features such as small islands (usually less than
100 revolutions).

5. Experimental methods
The experimental set-up consists of a rotated tumbler that is partially filled with

two different sized glass beads. The tumbler is made of acrylic and has a diameter
of 178 mm and is 6.35 mm thick. It is rotated about its axis with a Compumotor
LE57-51 stepper motor with a planetary gear drive. The angular velocity and angular
acceleration are pre-programmed using Visual C++ before being sent to the motor.
In the DGS experiments, the surrounding fluid is air, in the LGS experiments, the
particles are completely immersed in water. An air pocket is present in some LGS
experiments; however, this does not affect the results and the material never comes
into contact with the air. The range of fE studied is 3 to 8 cycles rev−1.

In DGS experiments, the tumbler is filled with a binary mixture of 1.2 mm blue
glass beads and 0.8 mm white zirconium silicate beads. The volume ratio of small to
large beads is 1:2. In LGS experiments, the tumbler is filled with 0.8 mm clear glass
beads and 0.3 mm black glass beads. The volume ratio of small to large beads is 1:4.
Experiments are allowed to run for a few rotations, enough for a stable segregation
pattern to form. Images of the patterns are then captured using a Kodak DC4800
digital camera. Experiments are run with various fill fractions for each fE to try to
capture many different patterns.

Long-time experiments are conducted in slurries for half-full systems. The Compu-
motor stepper motor is synchronized with a Kodak Megapixel 1.4i digital camera using
a Visual C++ program. Images are taken every half-revolution for 4500 revolutions,
resulting in 9000 total images. All the images are then merged together to form one
image showing the long-time segregation pattern for each fE .
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Figure 3. Results for a half-full tumbler with even fE . (a) Experimental images from a DGS.
(b) Experimental images from a LGS. (c) Poincaré sections from numerical simulation. The
period of the elliptic points is denoted by n.

Particle-tracking experiments are also conducted in slurries for half-full systems
with fE of 3 and 6 cycles rev−1. In these experiments, the tumbler is filled with a
mixture of 1.0 mm and 1.7 mm clear glass beads with a small to large volume ratio of
3:2. One 1.0 mm bead is dyed black to distinguish it from all other particles. Images
are taken every half revolution for 4500 revolutions, resulting in 9000 total images.
The digital images are then read using Matlab, and the tracer particle’s position is
determined and recorded to a data file for quantitative analysis.

6. Results – half-full tumblers (DGS and LGS)
Results are presented in the following manner. First, we present experiments leading

to lobe formation, followed by experiments where lobes do not form. These two results
are used to develop a theory for the formation of lobes. The theory is then tested by
seeking conditions that would result in further lobe formation.

Figures 3(a) and 3(b) are experimental images from half-full tumblers in DGS and
LGS with even fE (4, 6, and 8 cycles rev−1). Smaller particles segregate from the
larger particles forming lobes near the centre of the tumbler. These patterns form
within a few revolutions and are stable. There is considerable agreement between
DGS and LGS – each has the same number of lobes for the same fE .

Figure 3(c) shows Poincaré sections corresponding to systems with similar fE (4,
6 and 8 cycles rev−1). The typical arrangement of regular regions – elliptic points
surrounded by large regular islands – and chaotic regions are evident. The number
of regular islands present in each case is fE/2, similar to the number of lobes in the
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Figure 4. Results for a half-full tumbler with odd fE . (a) Experimental images from a DGS.
(b) Experimental images from a LGS. (c) Poincaré sections from numerical simulation. The
period of the elliptic points is denoted by n.

experiments. The Poincaré section patterns are very sensitive to the fill fraction and
a few per cent variation drastically changes the sizes of the regular islands.

Figure 4 shows experimental results for odd fE (3, 5 and 7 cycles rev−1). These
results are strikingly different. Figures 4(a) and 4(b) are experimental images from a
half-full tumbler in DGS and LGS. There is no clear lobe definition as in the case
of systems with even fE (figure 3). The companion Poincaré sections show there are
regular and chaotic regions present (figure 4c), but the sizes of the regular islands are
smaller than in the case of even fE . There is also no apparent correspondence with
the symmetries of the Poincaré sections. Smaller particles prefer to be near the core
of the tumbler, forming a pattern similar to that of classical radial segregation seen
in experiments carried out with steady rotation rates.

What accounts for this difference? Consider first the differences between the steady
and time-periodic cases. Segregation occurs only in the flowing layer; particles in
the bed are effectively locked until they re-enter the layer. In the steady rotation
case, small particles fall downward, transverse with respect to the direction of the
mean flow. The segregation mechanism (percolation) is always on; in just one or two
rotations, the small particles self-organize, forming an invariant core (see figure 5).
This is the standard radial segregation scenario. However, particles also segregate
along the layer. Recent particle-tracking velocimetry (PTV) experiments performed
in flowing granular layers in systems with particles of different sizes show that the
smaller particles travel faster than the larger particles (Jain, Ottino & Lueptow 2004).
To a first approximation, the speed of the flowing particles depends on the size, and
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Figure 5. Top – Segregation in a system with a steady rotation rate. Smaller particles percolate
down through the flowing layer toward the centre of the tumbler. Bottom – Segregation when
system is accelerating. Smaller particles still percolate through the flowing layer, but they also
travel farther down the flowing layer.

weakly on the density. Depending on the ratio of particle sizes, the difference in
particle speed can be quite significant.

Careful visualization of the experiments suggests the following mechanism for lobe
formation and the subsequent stability of the patterns. Segregation in the direction
of the flow depends strongly on the forcing. During acceleration, smaller particles
flow faster than larger ones and also farther down the flowing layer compared with
a system operating at a steady rotation rate. When the system is decelerating, the
effect is diminished. In half-full systems the periods of the elliptic points are fE/2.
Thus islands in systems with even fE have periods with integer values, while islands
in systems with odd fE have periods with non-integer values. In half-full systems
with even fE , the period of the elliptic points are commensurate with the cycle time
of the forcing. Therefore when the elliptic points return to their original positions,
in particular as they re-enter the layer, they encounter exactly the same forcing
(velocity, acceleration) as they did on the previous entrance. Resonance occurs, and
any dynamical effect such as fingering is reinforced (see figure 5). Small particles exit
the layer and fall in the location occupied by the islands; once there, since the islands
are invariant regions, material is ‘trapped’ and the pattern is frozen. By contrast, the
islands in systems with an odd fE encounter a forcing that is out of phase by half
a cycle from the previous time; acceleration in one period, deceleration in the next
period. Dynamical effects are cancelled. Figure 4(a) shows lobes beginning to form
for a system with fE =7. Since the tumbler is half-full, three and a half lobes begin to
form, but the lobes do not fully emerge because there is no reinforcement mechanism.

7. Results – more than half-full tumblers (DGS and LGS)
The results in the previous section are restricted to half-full systems. We argue

that lobes form when there exists a reinforcement mechanism due to islands having
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Figure 6. Results for a tumbler more than half-full with even fE . (a) Experimental images
from a DGS. The fill fractions are 0.79, 0.72 and 0.62 by area. (b) Experimental images from
a LGS. The fill fractions are 0.77, 0.69 and 0.60 by area. (c) Poincaré sections from numerical
simulation. The fill fractions are 0.83, 0.74 and 0.68 by area. The period of the elliptic points
is denoted by n.

periods with integer values. This argument can be tested by controlling the periods
of the islands with the fill level.

Figure 6 shows experimental images and numerical results in the form of Poincaré
sections for systems with even fE at various heights greater than half-full. Lobes
form in each experiment and the symmetry matches that of the regular islands in the
Poincaré sections. The number of lobes is equal to the number of regular islands, just
as in the half-full case. The Poincaré sections show that the regular islands are smaller
than the islands in the half-full systems with even fE . The patterns are very sensitive
to the fill fractions; the regular islands disappear by changing the fill level just a few
per cent. Another difference with the half-full case is that the lobes in the half-full
systems stretch mostly in the radial direction. The lobes in these systems are skewed
toward the direction of rotation, but the pattern is still rotationally symmetric. As
the fill fraction is increased, the lobes are more skewed. When lobes leave the flowing
layer they are parallel to the free surface resulting in the slanting.

In the previous section, experimental images show that lobes do not form in half-
full tumblers with odd fE owing to the lack of reinforcement. However, the periods
of the islands can be fine tuned to make reinforcement possible by changing the fill
fraction. Figure 7 shows experimental and numerical results corresponding to such
cases. The Poincaré sections indicate that the periods of the elliptic points are integer
values, suggesting that resonance is present.
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Figure 7. Results for a tumbler more than half-full with odd fE . (a) Experimental images
from a DGS. The fill fractions are 0.68, 0.62 and 0.57 by area. (b) Experimental images from
a LGS. The fill fractions are 0.67, 0.61 and 0.58 by area. (c) Poincaré sections from numerical
simulation. The fill fractions are 0.71, 0.64 and 0.60 by area. The period of the elliptic points
is denoted with n.

8. Further analysis of the half-full tumbler
The experiments and Poincaré sections of systems run with even fE (figure 3)

suggest that the model, simple as it is, clearly captures the segregation patterns
observed in the system. The experiments and Poincaré sections of systems run with
odd fE (figure 4), on the other hand, do not agree as well when the system is
half-full. There is evidence of small lobes at the periphery of the segregated regions
in some of the experiments, but the patterns do not match up. The images from
the experiments in figures 3 and 4 are only a snapshot of the segregation pattern
at a certain instant in time and the pattern that is captured in the image may not
necessarily show the general long-time behaviour captured by the Poincaré sections.
To gain more understanding of the long-time behaviour of the system, many images
of LGS experiments are averaged to form one image representing the segregation
pattern of the system. Averaged images for each fE studied are shown in figure 8.
Systems run with even fE show patterns similar to those of figure 3 – large lobes
with the same pattern as the Poincaré sections. Systems run with odd fE also show
clear evidence of smaller islands similar to those in the Poincaré sections of figure 4.

A second issue is the correspondence of lobes and the islands in the Poincaré
sections. In experiments, both segregation and collisional diffusion take place, but the
model includes neither. Yet experiments clearly show evidence of lobes where islands
exist in the Poincaré sections. To what extent do the particles in the lobes remain
trapped, as those in the numerically computed Poincaré sections? To investigate
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fE = 4 fE = 6 fE = 8

fE = 5 fE = 7fE = 3

Figure 8. Images of LGS experiments capturing the long-time behaviour for all the studied
fE . Each image is made by merging 9000 experimental images. The symmetric placement of
regular regions is seen for both the even and odd fE .

fE = 6fE = 3

Figure 9. Experimental Poincaré sections for systems run with fE of 3 and 6 cycles rev−1. The
images are made using data from particle tracking experiments. Both images show evidence
of three lobes.

this issue, a single tracer particle is tracked in a bidisperse LGS for fE of 3 and 6
cycles rev−1. The Poincaré sections predict three regular islands for each fE . Figure 9
shows the experimental Poincaré sections corresponding to the two fE made with the
particle tracking data. Both systems show clear evidence of three lobes as predicted
by numerically computed Poincaré sections; but in each case, the tracer particle does
not remain in a single lobe, rather it fills in the regions of all the lobes owing to
collisional diffusion.

The probability distributions of the tracer particle’s position show that, statistically,
the tracer particle prefers to be at a certain radial position and in one of the three
lobes (figure 10). The most probable radial position is between 0.55R and 0.6R for
both fE . There are three clear peaks in the probability distributions of the tracer
particle’s angular position in both cases, one corresponding to each of the lobes. The
peaks for fE = 6 are more defined, as should be expected since the lobes are more
defined in the experiments. Figure 11 shows plots of the angular position of the tracer
particle against the angular position the previous revolution. Points near the y = x

line are a result of the tracer particle remaining in the same lobe after one revolution.
Points away from the y = x line are a result of the tracer particle moving to another
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Figure 10. Probability distributions of the radial and angular positions for the tracked
particle in figure 9. (a) fE = 3, (b) fE = 6.
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Figure 11. Plots of the angular position after i + 1 revolutions against the angular position
after i revolutions. Points near the y = x line signify that the particle’s angular position did
not vary much – indicating the particle remained in the same island. (a) fE = 3, (b) fE = 6.

lobe after one revolution. Both plots in figure 11 show three regions with a higher
density of points near the y = x line. These three regions correspond to the three
lobes in the experiments. The higher scatter in the plot for the experiment with fE = 3
indicates that the particle is more likely to jump to another lobe after one revolution.
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The distribution of times the tracer particle spends in an island is exponential. On
average, the tracer particle remains in the same lobe for 5.9 revolutions when fE =6
and 2.1 revolutions when fE = 3.

9. Conclusions
Size segregation of DGS and LGS in time-periodically forced quasi-two-dimensional

tumblers reveals strong similarities. Both systems exhibit similar multi-lobe patterns
when subjected to the same forcing, and a relatively simple model describes the
patterns. The results are dominated by symmetry considerations and this opens
the possibility of tailoring segregated structures by manipulating the forcing. We
believe also that to the extent that surface flow in three-dimensional systems is
instantaneously one-dimensional (Gilchrist & Ottino 2003), the picture described here
may be generalized to three-dimensional systems as well. A challenge, however, is to
merge the combined contributions arising from the symmetries of the container (e.g.
square or triangular) and the symmetry of the forcing.

Let us close by addressing the issue of the agreement between the experimental
results for DGS and LGS. A possible way to compare the systems is in terms of the
Bagnold number (Ba), a classical view within the granular literature (Hunt et al. 2002).
The Bagnold number is defined as Ba = ρpγ̇ dε/µ where ρp is the particle density, γ̇ is
the shear rate, d is the particle diameter, ε is the surface roughness, and µ is the fluid
viscosity (Coussot & Ancey 1999). For the systems considered here, Ba ranges from
O(10) to O(102) for DGS and from O(10−3) to O(1) for LGS. These numbers suggest
that different mechanisms are at work and that no agreement should be expected.
However, considering the systems and the literature on suspensions provides a better
view. The states of a suspension are characterized by the value of the Stokes number
(St), which is essentially the Reynolds number (Re) based on the particle size and
density (St = ρpγ̇ d2/µ). At low particle inertia (or low St numbers), viscous forces
dominate, and stresses scale linearly with γ̇ . This is the so-called ‘quenched state’,
predicted by Koch and co-workers (Koch 1990; Tsao & Koch 1995). No agreement
is expected between DGS and LGS. At high St , the stresses scale inertially and are
proportional to γ̇ 2. This is the so-called ‘ignited state’. A significant result is that the
transition from the ‘quenched’ to ‘ignited state’ occurs at a St of roughly 10 over a
wide range of volume fractions (John Brady, personal communication). In this case
the behaviour of DGS and LGS is expected to be nearly identical. The values of St

in our experiments range from O(102) to O(103) for DGS and from O(1) to O(10)
for LGS. Our results suggest that agreement may occur at even lower values of St .

One of the main points that emerge from this study is that under various conditions
DGS and LGS produce similar segregation patterns, have similar flow properties, and
display qualitatively similar dynamic behaviours. This is significant from a research
standpoint since LGS offer several experimental advantages over DGS, and therefore
result in more controllable experiments which are easier to interpret. Controlling
body forces via buoyancy is one example. Perhaps more important is that humidity,
electrostatic charging of particles and abrasion, problems that plague even the simplest
experiments with DGS, play little or no role in LGS. The absence of the buildup
of electrostatic charges or cohesive forces due to moisture in LGS systems makes
experiments with small particles possible. It becomes practical to study smaller
desktop systems with magnetic fields and therefore altering body forces becomes
practical as well. This is difficult to achieve in DGS. Also, with suitable fluids and
proper illumination, we can visualize the interior of a granular bed without recourse
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to expensive magnetic resonance imaging (MRI) or X-ray instrumentation (Jain et al.
2001).
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